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Received 10 August 1983 

Abstract. A generic family of plane billiards has been discovered recently. The shape of 
the boundary is given by the quadratic conformal image of the unit circle, and is thus real 
analytic. For small deformations of the unit disc the billiard is a typical KAM system, but 
becomes ergodic or even mixing when the curvature of the boundary vanishes at some 
point. The Kolmogorov entropy has been calculated, and it increases with the deformation 
of the boundary. 

In the present work we study aspects of the quantum chaos for this billiard. We solve 
numerically the eigenvalue problem for the Laplace operator with Dirichlet’s boundary 
condition. We examine the spectrum, and inspect the avoided crossings at which mixing 
of nearby states occurs. The variation of the nodal structure and of the localisation 
properties of the eigenfunctions is studied. In analysing the level spacing distribution we 
find a continuous transition from the Poisson distribution towards the Wigner distribution. 
The exponent in the level repulsion law varies continuously along with a generic perturba- 
tion. For small perturbations it seems to be proportional to the square root of the 
perturbation parameter. 

1. Introduction 

The purpose of this work is to examine some general ideas on quantum chaos in a 
family of simple but generic Hamilton systems. More precisely, we study numerically 
the Dirichlet eigenvalue problem for the Laplace operator on a plane billiard with 
analytic boundaries. The shape of the billiard is defined by a quadratic conformal map 
of the unit disc. The classical dynamics of this system has been studied recently (Robnik 
1983), and it has been shown that the family of billiards thus defined is indeed a 
generic class of Hamilton systems: in one extreme it is an integrable system (circular 
disc), becoming a KAM system for small perturbations, and finally, in another extreme, 
it is (most probably) a mixing or even a Bernoulli system (Strelcyn 1983, Robnik 
1984). The system shows thus a generic stochastic transition, and if there exists any 
well defined analogy between the classical and quantum chaos, then it must be revealed 
in this case. 

We shall solve the eigenvalue problem and observe how the energy levels and the 
corresponding eigenfunctions change as the family parameter is varying. Similar work 
on a classical chaotic system has been done by McDonald and Kaufman (1979). They 
studied the eigenvalue problem for the stadium. Berry (1981) has quantised Sinai’s 
billiard. Very recently two groups have studied non-generic families of billiards that 
are (for all parameter values) infinitely close to a pseudointegrable system. Berry and 
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1050 M Robnik 

Wilkinson (1983) investigated the triangles, while Lewis et al (1984) studied the 
parallelograms. 

When an attempt is made to draw an analogy between the (very precisely defined) 
classical chaos and (not so well defined) quantum chaos, the following comments should 
be taken into account. 

(Cl)  The classical chaos is a consequence of nonlinearity and nonintegrability, and 
its ultimate origin is the (exponential) divergence of nearby orbits. 

(C2) There are two major and general aspects of the classical chaos. The first is 
the dynamical point of view, according to which chaos means unpredictability of the 
classical motion, which has (to the given degree) statistical properties as the only 
predictable attributes. The ergodic theory (Sinai 1976, Arnold and Avez 1968, 
Helleman 1980, Berry 1983a) gives a precise classification of the different levels from 
the hierarchy of chaotic motion (almost integrable, ergodic, mixing, Bernoulli, etc). 
(This is the reason for saying that the classical chaos has a very precise meaning.) The 
second aspect is the structural point of view, according to which chaos means a certain 
kind of (loss of) structure of the phase portrait. For instance, the integrable systems 
are characterised by the existing invariant tori, in KAM systems the tori are broken in 
resonant gaps, K systems are predominantly chaotic, but may have small stability 
islands, ergodic and mixing systems are structureless. This second point of view is able 
to distinguish clearly between integrable and nonintegrable cases, but cannot distinguish 
between the ergodic and mixing systems for example. 

(C3) The dynamical picture of classical chaos corresponds to the evolution of 
quantum states (and the (un)expected quantum chaos). But there are some funda- 
mental difficulties: firstly, quantum mechanics is a linear theory; secondly, the Hamilton 
operator of a bound system has always a discrete spectrum and the quantum motion 
is thus always quasiperiodic, as opposed to the possibility of a continuous spectrum of 
the Liouville operator in classical mechanics. Indeed. having a discrete countable basis 
in Hilbert space, one can represent the quantum motion as the motion of an infinite 
collection of uncoupled one-dimensional harmonic oscillators. It does not surprise us 
that each state is recurrent in time (Hogg and Huberman 1982). 

There is no analogy of the exponential divergence of orbits, and hence no analogy 
of classical chaotic motion. Of course, by introducing external perturbations, or by 
coupling to a continuum, one might very well find a chaotic behaviour, but not a 
self-generated one. 

(C4) However, the structural point of view of the classical chaos allows us to draw 
analogies, and to obtain an idea of what are the implications of nonintegrhbility in 
quantum mechanics. The most important structural change in the classical phase space 
when an integrable system is perturbed, and becomes e.g. ergodic, is the destruction 
of invariant tori. The projection of a classical torus is generallv a proper subset of the 
energetically accessible region, so that the corresponding motion in configuration space 
is localised, i.e. bounded. on a smaller than possible region. But if a torus is broken, 
and if the motion becomes ergodic on the energy surface in phase space, then the 
trajectories in configuration space fill the entire region admitted by the condition that 
the energy is larger than the potential. One important consequence of the structural 
changes along with the transition to chaos is thus the delocalisation of the classical 
motion. 

In quantum mechanics a certain analogy of phase space exists, and using the Wigner 
functions it has been possible to explain these structural changes more quantitatively, 
in particular by using the semiclassical approach (Berry 1983, and references therein). 
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Indeed, increasingly more emphasis seems to be given to this structural point of view 
when the stationary problem of nonintegrable quantum systems is studied (Hose and 
Taylor 1983). Two aspects seem most important. (i) If a quantum system is nonin- 
tegrable the wavefunctions in configuration space appear to be random. (ii) As a 
consequence of this the transition probabilities are expected to decrease drastically 
and to become randomly distributed. These postulates give very definite predictions 
as concerns, for instance, atomic and molecular spectra. The quadratic Zeeman effect 
is an example (Robnik 1981, 1982, Clark and Taylor 1980, Harada and Hasegawa 
1983). 

On the other hand, if a system happens to be integrable, then the wavefunctions 
in configuration space are expected to be localised, in close analogy to the localisation 
of the classical trajectories. Hose and Taylor (1983) call it surprising (or unexpected) 
localisation, because the measure of the Hamilton systems having this property is zero. 
Nevertheless, the localisation of states in the above sense can be generally expected 
€or low levels. This might be an a priori qualitative explanation €or the stability of 
molecules. Examples in this context can be found in the review by Noid et al(1981a, b). 

These comments give only a rough, introductory idea of what are the most important 
structural changes implied by the nonintegrability, and which might be called quantum 
chaos. Our results support the following general ideas on quantum chaos. 

(i) The repulsion of energy levels and the existence of avoided crossings is a 
property of nonintegrable systems (Ramaswamy and Marcus 1981, Berry 1983a, 
Zaslavsky 1981, Marcus 1980a, b). 

(ii) As a consequence of (i) the distribution of level spacings is similar to the Wigner 
distribution (Zaslavsky 1977, 1979, 1981, Berry 1981). 

(iii) Strong mixing of states occurs near the avoided crossings (Noid et a1 1980, 
1981a, b, Marcus 1980a, b, Ramashamy and Marcus 1981). 

(iv) As a consequence of (iii) the wavefunctions of levels participating in an avoided 
crossing have a random appearance (McDonald and Kaufman 1979, Noid et al1979). 

(v) If there are many avoided crossings, then the transition probabilities are notably 
diminished and randomly distributed (see also Marcus 1980a). 

(vi) For sufficiently small perturbations of an integrable system some levels follow 
the predictions of the perturbation theory, while others do not. The former states 
correspond to the most stable classical tori through the EBK quantisation (Ramaswamy 
and Marcus 1981). 

(vii) The lower levels and the associated wavefunctions show little or no features 
described in (i)-(v), and are thus always regular. 

In the following we examine the spectrum of our billiard box (§  4) and analyse the 
nodal structure and the localisation properties of the eigenfunctions (§ 5 ) .  In § 6 we 
investigate the level spacing distribution P( S) and the associated law of level repulsion. 
Emphasis is put on the variation of these properties with the deformation of the billiard. 
In particular, we find a continuous transition of P ( S )  from the Poisson distribution 
(integrable case) to the Wigner distribution (ergodic system). 

2. The definition of the family of billiards 

The shape of our billiard is shown in figure 1.  It is defined as a quadratic conformal 
map (in the complex w-plane) of the unit disc (in the complex z-plane), i.e. 

(1) w = AZ + B Z ~ .  
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A =  0 

1/4 < h < 1 / 2  
0 A : 112 

Figure 1. The shape of the billiard at various values of A .  

In real notation (w=: u+iu,  z=: x + i y )  we have the parametric equation of the 
boundary, 

U = A  COS e +  B COS 28, u = A sin 8+ B sin 28, (2) 

where 8 is the polar angle in the z plane. We shall denote A := B/A. Then for A = 0 
we have a circular disc, for A =$ the curvature vanishes at 8 = T,  and for A =$ the 
derivative dw/dz  vanishes at the boundary (at 8 = T ) ,  so that Z H  w(z) is no longer 
a conformal map and a cusp occurs there. The area of our billiard is equal to 

d= .rr(A2+2B2). (3)  

A = cos p ,  B = (1/J2) sin p,  (4) 

p = tan-'(A&), ( 5 )  

With the reparametrisation 

- 
for 0 s p s pslng = t an- ' ( l / J2)  we have a continuous family of billiards of constant area 
equal to d= T. 

The reasons for choosing this particular family of billiards are the following. 
(a) Most of the rigorous theorems on the classical dynamics of billiards assume 

smooth boundaries (Lazutkin 1973, Mather 1982, Strelcyn 1982). Hence the need 
for analyticity. 

(b) It is convenient to take a conformal map of the unit disc. Firstly, because this 
is sometimes useful in calculating the classical orbits; secondly, because we obtain at 
the same time an equivalent and interesting system in the unit disc with conformally 
transformed kinetic energy. For example, the trajectories on the unit disc, which are 
conformal maps of the orbits of our billiard, are hyperbolae. Thirdly, as can be seen 
from ( 2 ) ,  the boundary of our billiard is determined by the lowest harmonic perturba- 
tion of the unit circle. This may be generalised by including higher harmonic perturba- 
tions. Finally, and this is most important, the conformal map enables us to solve the 
Dirichlet eigenvalue problem for the (conformally transformed) Laplace operator on 
the unit disc, where we have the basis of Bessel functions and can use the diagonalisation 
method. 

(c) The choice of the quadratic map is motivated, of course, by simplicity arguments. 
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As far as the classical dynamics is concerned, it is not surprising that this family is 
indeed interesting (Robnik 1983, henceforth referred to as (I)). A theorem by Mather 
(1982) predicts the disappearance of Lazutkin's tori (1973) as soon as the curvature 
of the boundary vanishes at least at one point. In our case this happens at A = a  and 
one should expect a chaotic behaviour for i s  A < 4. Indeed, it has been shown in (I) 
that our billiard is a generic classical Hamilton system. It is integrable for A = O  
(conservation of angular momentum), and becomes a typical KAM system for small A. 
It has several stable periodic orbits surrounded by quite large stability islands, as can 
be seen in the Poincar6 maps published in (I). The most important stable periodic 
orbit is the horizontal period-two orbit, corresponding to the simple bouncing between 
the_ points 6 = 0 and 6 = T. It has the stability interval A E [0, i(h- l)]. At A = 
(42-  1)/2 it goes unstable, and bifurcates. A cascade of period doubling bifurcations 
follows, with the accumulation point A si. At A > a  no tori or stability islands are 
seen in the Poincart maps. Moreover, the investigation of the homoclinic points 
indicates that the system has mixing properties. Also, the Kolmogorov entropy 
increases very rapidly as A increases through A =a.  It might be conjectured that the 
system is not only mixing, but even Bernoulli for A E [a, $) (Strelcyn 1983, Robnik 
1984). There is strong numerical evidence for the mixing property. 

3. Quantising the billiard: Dirichlet's eigenvalue problem for the Laplace operator 

In this section we shall formulate the eigenvalue problem. Let D( p )  denote the domain 
of our billiard whose boundary in the real (U, 0)-plane is given by (2) and (4). Then, 
studying the quantum states of a point particle inside this two-dimensional box, we 
have the Hamilton operator fi = -Auc = - ( a 2 / a u 2 + a 2 / a u 2 ) ,  where A,, is the Laplace 
operator, and we assume h 2 / 2 m  = 1. The Hilbert space on which A = -Auv is operating 
is the set of all functions + defined on D ( p )  and obeying the Dirichlet boundary 
condition, i.e. 4 = 0 on aD( p ) .  The eigenvalue problem that we are going to solve is 
thus simply 

--A,"* = E*, (6) 

where E is the eigenvalue of the eigenfunction $. As has been explained, we shall 
solve ( 6 )  on the unit disc (in the x, y plane) instead. The Laplace operator is thus 
conformally mapped, 

Auv = A x y / J =  (a2/ax2+a2/ay2)/J, (7) 

J=/dw/dz12=A2(1+4A2r2+4Arcos e). (8) 

where 

(Henceforth we shall drop the indices, i.e. A = A x y . )  Here, r and 8 are the polar 
coordinates in the x, y plane. By inserting (7) into ( 6 )  we have 

A + + E J ( r ,  e ) + = O ,  (9) 
where A in polar coordinates is equal to 

A = a2/ar2 + rF2 a2/ae2. 

Suppose the set {p,} of eigenfunctions of -A on the unit disc forms an orthonomal 
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basis. Let us expand our solution +, 

IL = c cp, .  
I 

Then it follows that 

c C , ( Z f 4 ]  - EJ,) = 0, 
I 

where z: is the eigenvalue of - A  corresponding to the eigenfunction pl, and 

J , , = ( ~ , / J / ~ , ) = ( J ) ,  

are the elements of the matrix J. By the definition of the matrix U, 

(U-'),] = ZiSI]' 

and the vector 

( c ) ,  = Cn 

equation (12) appears in the compact form 

(U-'l U-' - EJ)c = 0. 

Now, by multiplying by U from the left and defining U-IC = k we obtain 

(E-'l -UJU)k=O. 

The eigenvalues E are obtained from the solutions of the secular equation 

detlpl - UJU/ = 0 ,  

where E = l / p ,  and c = Uk, with k being the corresponding eigenvector of the matrix 
UJU. 

Our numerical method is the diagonalisation of the matrix UJU in a truncated basis 
{pi}, 1 S i S N .  Let us determine the basis {pi}. The eigenfunctions of (10) are the 
products of Bessel and trigonometric functions, 

with the normalisation constants 

R 0 . n  = [ J G J A ( Y O , ~ ) I - ' ~  R k . n  = [ J i I ' ; J L ( Y k , n ) I ,  k z 0. (20) 

Here J k  is the Bessel function of order k ,  Y k , n  is its nth zero, and JL is the derivative 
of Jk.  The eigenvalue of the Laplace operator (10) corresponding to a basis function 
(19) is given by 

(21) 
When the eigenfunctions (Ok,n are rearranged in order of increasing eigenvalues Y : , ~ ,  
we define a map (k, n)++ i = i (  k,  n) (and the inverse map k = k (  i), n = n(i)) .  For the 
lowest levels this map is reproduced in table 1. Then z, = y k ( , ) , n ( t l ,  and (U), = l / z ,  (see 
equation (14)). 

In order to work out the diagonalisation procedure (17) we need to calculate the 
matrix elements Jz, of J (equation (13)). From (8) we have 

2 
- A p k . n  = Y k , n ( F k , n .  

JIl = A 2 ( ~ , l + 4 A 2 ( c p , l ~ 2 ~ ~ l ) + 4 A ( ~ , ~ r  cos O b l ) ) .  (22) 
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Table 1. The ordering mapping of the zeros yk," of the Bessel functions according to the 
increasing value. 

i k n I k n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 1 

0 
1 
2 
0 
3 
1 
4 
2 
0 
5 
3 
6 
1 
4 
I 
2 
0 
8 
5 
3 
1 
9 
6 
4 
10 

1 
1 
1 
2 
1 
2 
1 
2 
3 
1 
2 
1 
3 
2 
1 
3 
4 
1 
2 
3 
4 
1 
2 
3 
1 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

2 
7 
0 

11 
5 
8 
3 
1 

12 
6 
9 
4 

13 
2 
0 
7 

10 
14 

5 
3 
8 
1 

11 
15 
6 

4 
2 
5 
1 
3 
2 
4 
5 
1 
3 
2 
4 
1 
5 
6 
3 
2 
2 
4 
5 
3 
6 
2 
1 
4 

It is seen here that (cpilr21cp,) and (cpilrcos 0(cpj) vanish if cpiacos k0 and 'p," sin k0. 
In other words, our perturbation of the unit disc preserves the mirror symmetry (parity) 
with respect to the horizontal axis. This is immediately clear by looking at figure 1. 
In order to study the generic spectral properties it is necessary to eliminate all exact 
symmetries. Therefore, in the following we shall restrict ourselves to the study of 
states with positive parity, i.e. those states CC, that are linear combinations of cos k0, 
k = 0 ,  1 , 2 ,  . . . . Our basis functions are then nondegenerate and ordered according to 
increasing eigenvalues as described above. 

The matrix elements of ( 2 2 )  are given by the integrals 

J0 

where 

and 
r i  
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where 
k' = 0, k = 1 or k = 1, k' = 0, 

g k ' k =  77/29 k' = k * 1, k' # 0, k # 0,  (24) c otherwise. 

Notice the very important circumstance that the parameter dependence of the matrix 
J is known, since the integrals (23)-(24) play the role of constants and must be 
calculated only once. This distinguishes our system from others, where the integration 
must be repeated for each new value of a parameter. Since it is just the integration 
that is most expensive, the separation of the parameter dependence is an extremely 
important property of our problem. For example, all calculations have been done on 
the Cyber 176 computer in double precision (28 decimal places working precision; 
but the actual accuracy in calculating and integrating the Bessel functions was 20 
digits). The integrations were carried out for a 310 x 310 matrix. In this case there 
are 8956 nonvanishing integrals. The required computer time was about 10 hours. 
But the diagonalisation of a 150 X 150 matrix requires only 50 seconds computer time, 
so that the eigenvalue problem was easily solved for 400 parameter values p ,  which 
is enough to obtain a smooth variation of the eigenvalues with p .  

As concerns the numerical procedure we have checked the accuracy of integration 
(Gaussian integration with twice 32 nodes) by using the orthogonality property of the 
Bessel functions. At least 20 figures were found correct. Further, when diagonalising 
we have taken N = 100 and then also N = 150. The convergence of levels was inspected: 
the ground level was accurate to eight decimal places, the 40th level to four places 
and the 70th level to two places. The analysis of the results presented in this work is 
restricted to the lowest 40 levels, whose relative accuracy is at least or slightly 
better, except for figure 2 where 70 levels are plotted-because the numerical error 
is still less than the plot error. 

4. The spectrum 

In figure 2 we show the lowest 70 levels as functions of p , O S p S p S i n g .  For small 
p a  0, k and n are good quantum numbers, and their values can be read off in table 1. 
We see that the levels are on the average straight horizontal lines. In other words, 
the number of levels below the given energy (the so-called mode number) does not 
change very much with p because the area of the billiard is constant (Weyl area 
formula, Thomas-Fermi rule). More precise prediction of the mode number N ( E )  as 
a function of energy is obtained by applying the generalised Weyl asymptotic formula 
(Baltes and Hilf 19781, 

5 2 -  af N ( E )  =--- &E 9:E+L$I(s )ds+ E ~ 

corners 24ra i  477 477 1277 

where SP is the area, 9 the perimeter, I(s) the curvature (positive when convex 
outwards) as a function of the arc length s, and a, are the interior corner anglest. In 
our case d = 77, while the perimeter 2' is equal to the integral 

Y = A  {02vdB (1+4AZ+4A cos 19)"~ .  

t Equation (25) is a consistent asymptotic expansion, containing all terms that do not vanish as the wavelength 
goes to zero. 
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200 

100 

0 0 2  0 4  0 6  
0 

Figure 2. The spectrum (70 levels of even parity) for the billiard box as a function of the 
parameter p. The labels ( k ,  n), which are good quantum numbers for small perturbations 
of the circular boundary, are given in table 1 .  

Since A = ( 1  + 2A2)-”2 we obtain the power expansion 

2 7 = 2 T ( i + ; ~ 4 - ~ 6 + . .  .I. 
Next we calculate the curvature, 

X = ( l + 8 h 2 + 6 A  cos B ) / ( 1 + 4 h 2 + 4 A  cos 

Its integral along the boundary, 

(27) 

turns out to be independent of A ,  namely 

%(S) ds = 2 r .  (30) $ 
Inserting d = T, (27) and (30) in the expression (25) yields the mode number N( E, A ) ,  

N ( E , A ) = a E - 1 ~ ( 1 + ~ A 4 - A 6 + .  . . ) + B .  (31) 
This is the total number of modes, including even and odd parity. Our numerical 
calculations have been done for even parity, and to compare the results with the theory 
we have to subtract from (31) the number of modes of odd parity. The wavefunctions 
of odd parity are linear combinations of sin kB, k = 1 , 2 , 3 , .  . . , so that they are the 
solutions of the eigenvalue problem on the desymmetrised billiard. This is bounded 
by the upper half of the curve (2) and by the x axis. Therefore, 

(32) &odd= r / 2 ,  2 o d d  =$x+ 2 A  =;z+ 2/(  1 + 2A ’)l”, 

xodd(s)ds=t  X(S)dS=T,  I I 
and the corresponding mode number (with corner corrections included), 

N o d d (  E, A ) = E - { 2 o & p %  + A. (33) 
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Consequently, Neven(E, A )  = N ( E ,  A)-N,,,(E, A )  follows from (31)-(33): 
,- 

N,,,,(E, A )  = ;E -&E[+- T- ’+ T - ’ A  * -$( T-’ - + ) A 4  +4(5/ T - l ) h 6 +  , . .]-A, (34) 

Because 0 G A < $ and since the lowest term of the power expansion in A is quadratic, 
the dependence of N,,,,(E, A )  on A is indeed very weak. In figure 3 we compare the 
numerically calculated mode number for even states with the theoretical result 
Neven(E, A ) ,  as given in (34). The agreement is very good. The broken curves a re  the 
result of the Weyl area formula, and we see that the perimeter corrections according 
to (34) a re  significant. The mode number N,,,,(E, A )  is almost independent of 
h = (l/h) tan p ,  as predicted by the theory. 

E 

Figure 3. The mode number AV,..en( E, A )  for even states as a function of energy, according 
to the numerical results. The prediction by the Weyl area formula (i.e. Thomas-Fermi 
rule) is represented by the broken curve, and is seen to he significantly improved by 
including the perimeter and curvature corrections (full curve) according to (34). The mode 
number ,V,,en(E, A )  varies only slightly with A ,  as predicted by (34) ,  and shown for ( a )  
p=0.1536, ( b )  p=0.3077. i c )  p=0.4608, ( d )  p = p , , , , = 0 . 6 1 5 5 .  

Because the mode number is (almost) independent of p the mean level spacing is 
(almost) constant as well. The spectrum is thus surprisingly rigid. Even near the 
singular point p = pIlng ( A  = 41, where a cusp of the boundary appears at  0 = 7, there 
are no dramatic changes in the spectrum. There are, however. some levels with large 
positive slope (figure 2 ) .  The constancy of the mode number is maintained in that the  
number of ascending levels is approximately equal to the number of descending levels. 
They d o  not cross but participate in avoided crossings, where they a re  mutually repelled. 
In fact the levels exchange their approximate (‘local’) asymptotes. For instance, a 
horizontal almost constant level becomes steep and the steep one  becomes almost 
constant. It will be seen in 0 5 ,  when we shall analyse the corresponding wavefunctions, 
that there is a kind of ‘exchange of identity’ between the states participating in an 
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avoided crossing. This is a consequence of the strong mixing of states near an avoided 
crossing. If the avoiding of levels is ignored as the lowest approximation, thereby 
pretending a level crossing, then the ‘exchange of identity’ explains why such a crude 
approximation is surprisingly fine (see also Ramaswamy and Marcus 1981). 

In figure 4 we show the lowest levels on a finer scale. It should be observed that 
the ground level is (slightly) increasing. This agrees with a variational property of the 
circular disc: the ground eigenvalue of the negative Laplace operator on a plane region 
of constant area, with Dirichlet’s boundary condition, is the lowest for a circular disc 
(Krahn 1925, Robnik 1980b). For any area preserving deformation of a circular disc, 
in particular for our billiard, the ground eigenvalue must increase. 

In figure 5 we show the levels ( 2 0 s  i s 30) in the energy range 1 5 0 s  E s 250. 

E 

2 1  17.2) 

2 6  1 2 . 4 )  
2 5  (10.11 

7001 2 4  1 4 . 3 )  __. 
2 3  16,21 
2 2  (9.11 

21  (1.41 
, 2 0  13.31 , 

1 SO 
0 0 2  0 4  0 6  

P 

Figure 4. Five lowest levels of figure 2. Figure 5. The levels E,,  2 0 6  i G 30, in the energy 
range 1 5 0 s  E, ~ 2 5 0 .  The lowest-order perturba- 
tion theory (according to (35) and shown by broken 
curves) yields best results for the levels i = 21( l , ? )  
and i = 28 (0, 5 ) ,  which correspond to the most stable 
classical tori for low p. 

The broken lines are the results of the (lowest-order) perturbation theory, according 
to which 

E (  p )  = ElP+,(l -4 tan’ p(knlr’lkn))/cos* p.  ( 3 5 )  
It is characteristic that some levels (e.g. (k, n )  = (1’4) and ( 0 , 5 )  in figure 5) follow 
this prediction quite well for low p ,  while others do not. It can be shown that these 
‘surprisingly predictable’ levels correspond to the most stable classical tori through 
the EBK quantisation (or better called, tori quantisation). Other features of the 
spectrum are better understood together with the wavefunctions in § 5. 

Let us look at the semiclassical spectrum of the circular disc with radius equal to 
unity. As before we assume h 2 / 2 m  = 1; The classical Hamilton function H = p ’  
corresponds to the quantum Hamiltonian H =p** = -A.  In polar coordinates the energy 
is equal to 

E =pf  + k’lr’, (36) 
where p ,  is the radial momentum, and k = 0 , 1 , 2 , .  . . is the quantised value of the 
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angular momentum, which is a constant of the motion. Hence, the action 

where rmi, = k / &  is the radius of the circular caustic formed by the classical trajec- 
tories. The phase shift of the semiclassical wavefunction at the caustic is n/2,  while 
at the reflecting boundary it is equal to n, because the wavefunction must vanish there. 
Consequently, the Maslov index CY in the quantisation condition, 

I,= n -  1 + a/4,  (38) 

is equal to 3 .  Here n = 1,2,. . . , is the radial quantum number, i.e. n - 1 is the number 
of nodes (excluding the boundary) of the radial wavefunction. From (37) and (38) 
we obtain the semiclassical energy levels Ek,,, given by 

k sin-'(k/JEk,,)+(Ek,,- k 2 ) ' l 2 =  ~ ( n  - a + i k ) ,  (39) 

where the labelling is the same as in the exact solution E k , ,  = yE,n (equation (21)). 
The accuracy of the semiclassical approximation (39) is not excellent for low levels. 
For instance the ground level Eo,l = (3n/4)'= 5.551 . . . ,while the exact value is 

= 5.783 . . . . But the approximation becomes asymptotically better as n-m. In 
fact, the lowest term in the asymptotic expansion agrees with the exact expansion for 
the zeros of Bessel functions, namely 

Et,, = 7r2(  n - a + $ k ) 2 [  1 + O( 1 / n ')I, (40) 

but higher terms do not. 
The numerical value of the semiclassical levels is not important in our context. We 

need the semiclassical picture for the identification of those classical tori and orbits 
on them which correspond to the exact eigenstates (19). 

The association of the classical trajectories in configuration space with the quantum 
states follows from (39). We write the angular momentum k in the form 

- 
k = /p/rmin = J E  sin x, (41) 

where x is the reflection angle of the orbit (i.e. the angle between the velocity vector 
and the normal to the boundary, both pointing inwards). Hence, ,y = 0 (radial motion) 
for k = 0, while for k # 0 one has 

x +cot x =[( n -a)/ k +f]. (42) 

The above formula assigns classical orbits (specified by the angle of incidence x) to 
the given exact quantum state (specified by the quantum numbers k and n) .  For 
example, for small n and large k the exact wavefunction (19) is concentrated near the 
boundary (because we have Bessel functions of high order), and is modulated by the 
high frequency angular dependence. This corresponds to the classical orbits with little 
radial motion (low n )  and large angular momentum k. The classical motion is thus 
localised on a narrow circular annulus between the caustic and the boundary of the 
disc. This means x = ~ / 2 ,  in agreement with (42). 

When this correspondence between the classical motion and quantum states is 
combined with the adiabatic picture, we are able to understand the qualitative properties 
of the spectrum and of the wavefunctions. We describe now this heuristic approach. 
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According to the adiabatic theorem of quantum mechanics (Landau and Lifshitz 
1975) a system remains in the same state, following the continuously varying energy 
level, when a parameter of the Hamiltonian is (infinitely) slowly changing. In our case, 
with p varying, the system follows a given level E i ( p ) .  Consider a level with large 
positive slope. (For example i = 28, i.e. ( k ,  n )  = ( 0 , 5 )  shown in figure 5 . )  By increasing 
p we have to do work in order that the system is able to follow the increasing level 
E i ( p ) .  Classically, we do work against the ‘pressure’ of the colliding particle. But 
because our deformation is area preserving, this work is positive if the collisions appear 
predominantly in those regions where the boundary is moving inward with p increasing 
(compression). This implies that the corresponding classical orbits must be localised 
near the horizontal symmetry axis, because at 8 = 0 and 8 = 71 the compression takes 
place (the distance between these points decreases as 2A = 2 cos p ) .  Therefore, we 
expect the corresponding exact wavefunction to be localised along the symmetry axis 
as well. This is indeed observed, and shown in 0 6 (figure 10(e)). 

Similar arguments explain the localisation of wavefunctions in the vertical direction 
(because of the expansion) for those quantum states with large negative slope (dEi/dp < 
0) of the corresponding level. 

Finally, an energy level Ei( p )  is approximately constant (dEi/dp = 0) if the corres- 
ponding wavefunction is isotropic either in an ordered manner (rotational symmetry), 
or in a random disordered manner (chaotic, highly mixed states). In the former case 
the classical motion is localised near the boundary (glancing trajectories), while in the 
latter case the classical motion is chaotic, e.g. ergodic. In both cases no or little work 
is done under a small and slow area preserving deformation. 

steep energy level (IdEi/dpl > 0) ++localised wavefunction cLi, 

almost constant energy level (dE,/dp = 0) 

We may formulate the qualitative relationship: 

-isotropic wavefunction (either ordered or disordered). 

In the semiclassical picture the localisation of a quantum state corresponds to the 
localised classical motion in configuration space. The latter is a consequence of the 
existence of invariant tori. But then the associated actions are invariant, adiabatically 
(Whiteman 1977, Arnold 1980), i.e. 

I = (257-l p.dr=constant. f 
This implies an approximate scaling law E i a l / L 2 ,  where L is a typical length scale 
of the corresponding motion. For example, if k = 0, then L = A and we have roughly 
E, a l/cos2 p,  which agrees with the comparison of the perturbation theory with exact 
levels (figure 5): for the states k = 0 and k = 1,  which are localised near the horizontal 
symmetry axis and correspond to the invariant tori around the stable period-two orbit, 
the agreement is the best. These are precisely those states with the smallest (knlr’lkn) 
(see (35)), so that they follow the above scaling rule quite well. Another example is 
the level ( k ,  n )  = (10, l ) ,  which corresponds to a glancing motion near the boundary. 
Here we may take L - 2’. But the perimeter 2’ of our billiard changes much more 
slowly with p than A. (See the power expansion (261.) Therefore the corresponding 
level should (and does) vary much more slowly than in the case k = 0. 

On the other hand, having a chaotic classical motion, the adiabatic invariant is the 
phase space volume. The area preserving property of the deformation implies then 



1062 M Robnik 

the constancy of energy. The corresponding quantum energy level is thus also expected 
to be almost constant. This is clearly seen in figure2 for almost all states for the 
parameter values near p i  psing. The classical system is highly chaotic there, as shown 
in (I). 

5. The wavefunctions 

In this section we describe the properties of eigenfunctions, and begin with the discussion 
of low states. Some of the corresponding levels are shown in figure 4. First of all, it 
has been verified that the ground state is nodeless for all p ,  as predicted by a general 
theorem (Courant and Hilbert 1968). 

Low states are generally insensitive to the perturbations, as has been emphasised 
in the introduction (vii). This is explained by the large wavelengths of the standing 
waves: the wavefunction cannot ‘see’ the finest details of the boundary. In figure 6 
we show the nodal pattern of the (0 ,2)  state in a circular disc (figure 6 ( a ) ) ,  and we 
show how it changes (figures 6 ( b ) - ( d ) )  with the deformation of the boundary. There 
are no dramatic changes. For example, it is conceivable that a nodal cell (e.g. the 
black inner disc) would become not only stretched, but would also wind in a turbulent, 

Figure 6. The nodal structure of the wavefunction ICr4 as a function of p ,  ( a )  p = O ,  ( b )  
p = O . 2 ,  ( c )  p=O.4, ( d )  p=p,,,,=O.6155. At low p + O ,  1(14 is labelled by ( k , n ) = ( 0 , 2 )  
(see (19)). The units are the same for both coordinates, but otherwise arbitrary. 

mixing way. In addition, it is also conceivable that new, arbitrary small nodal cells 
appear, split and disappear. All this is not observed. There is an explanation for the 
absence of such mixing and splitting properties: there exists a lower bound for the 
area of a nodal cell (Robnik 1980a). This is discussed in the appendix. In our 
two-dimensional case the lower bound dmin is given by 

d m i n  = v: , ,  / E  (43) 
where E is the energy eigenvalue of the state. The area of the black region in figure 6(  a )  
reaches the lower bound (43), because it has a circular shape. Indeed, since E4 = y&, 
the radius r b =  yo , l /yo ,2  inferred from (43) agrees with the nodal radius of the exact 
wavefunction ( p 0 , 2  a Jo( ~ ~ , ~ r ) .  As p varies, the energy level E4( p )  increases slightly, 
as shown in figure 4. The lower bound dmin decreases-but only slightly. Consequently, 
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the black nodal cell cannot be split into two cells with p varying. The white cell, which 
is a circular annulus at p = 0 and the area of which is greater than 2 d m i n ,  can be split 
into two cells. This is actually observed in figure 6 ( d ) .  But further splitting of cells is 
forbidden. 

A rough estimate of the upper bound 2’max of the perimeter of a nodal cell is 
obtained from the generalised asymptotic formula (25), by ignoring the constant term, 
and by requiring N ( E )  > 0, whence 

- 
zmaX = J E s r ~ .  

We can thus understand why there cannot be an arbitrary number of cells in the 
nodal pattern, provided the energy is bounded. We can also understand that the nodal 
cells cannot be stretched (to form a thin ribbon), and cannot be mixed arbitrarily: this 
would imply a large increase of the eigenvalue, determined roughly by a typical length 
scale of the ribbon, namely by its thickness. As the (mean) thickness went to zero the 
energy would go to infinity. 

The variation of the nodal structure shown in figure6 is a counterexample to a 
claim on the adiabatic invariance of the number of nodal cells (Robnik 1980a). The 
latter was based on misleading topological arguments, and I have criticised that already 
(Robnik 1981). Korsch (1983) has recently reviewed the generic properties of nodal 
structure, and his compilation will be useful in the discussion of higher states, below. 
However, he does not mention the important property on the lower bound for the 
area of nodal cells, which we discuss in the appendix. (A weaker property is well 
known (Courant and Hilbert 1968): the nth state cannot have more than n nodal 
cells. But this says nothing about the size of the cells.) 

Now we are going to study higher states, corresponding to the levels in figure 5. 
Consider first the level i = 23, whose label at small p is ( 6 , 2 ) .  It is almost constant 
until it collides with the level i = 22 in the avoided crossing near p = 0.25. Its approxi- 
mate constancy implies-as argued in § 4-that the wavefunction is either localised in 
an ordered manner, with rotational symmetry, or chaotic. In figures 7(a)-( f )  we show 

Figure 7. The nodal structure of the wavefunction Qz3 as a function of p .  (a) p=O, ( b )  
p = O . 2 ,  ( c )  p = O . 2 5 ,  ( d )  p=O.3, ( e )  p=O.4 and (f) p=p,,,,=O.6155. For the same set 
of the parameter values we show the localisation properties of the wavefunction (g, I ) .  In 
black regions the probability density Q i 3  exceeds its average value 1,’~ (arbitrary units). 
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how the nodal pattern changes with p, while in figures 7(g) - ( I )  we plot in black the 
regions where the probability density I,& is larger than its mean value 1/ r. It is seen, 
indeed, that the state is localised on a circular annulus at small p,  and becomes chaotic 
near the avoided crossing at p = 0.25, as shown in figure 7( i). This a consequence of 
the mixing of states i = 23 and i = 22. At the avoided crossing these states exchange 
their identity, and the level ,Ez3( p) becomes a steep function of p. As argued in 0 4, 
this implies a localisation of the probability density near the horizontal symmetry line, 
which is actually observed for p = 0.3 in figure 7( j ) .  Near p = 0.4 a distant repulsion 
by the upper level ( i  = 24) appears, and ,Ez3( p )  becomes weakly decreasing. Again, 
using the heuristic arguments within the adiabatic picture, we understand that the state 
is now (weakly) localised in the vertical direction, as shown in figure 7(1). 

Using this example we would like to emphasise that classical chaos does not 
necessarily imply quantum chaos, as pointed out by Noid et ul (1980). More precisely, 
at p = 0.3 there exist almost no classical tori, and the system is largely chaotic (I). 
Nevertheless, in figure 7 (  j )  we have a clear example of a localised, non-random state. 

As seen in figure 5 the level Ezs( p) is almost constant. Because k = 10, n = 1 the 
state is localised near the boundary, at small p (figure 8). This is consistent with the 
(approximate) constancy of the level. Near p = 0.4 (figure 8 ( g ) )  the inner boundary 
of the localisation region is deformed in a manner that reminds us of the deformation 
of classical caustics (I). But again, one should not forget that at p=O.4 no classical 
tori and caustics exist. This is thus again an example that a straightforward analogy 
between the classical and quantum chaos runs into difficulties. It seems that quantum 
localisation properties (‘quantum tori’) persist far beyond the classical stochasticity 

1- 

id )  I r - 0 1  

Figure 8. The nodal structure of the wavefunction 
Jlzs as a function of p,  (a)  p = O ,  ( b )  p = O . 2 ,  ( c )  
p=0 .4 ,  ( d )  p=ps , , ,=0 .6155 .  At the same values 
of p we show the domains (in black) where the 
probability density is larger than its mean value l / ~  
( e ) - ( h )  (arbitrary units). 

Figure 9. The same as figure 8, but for the wavefunc- 
tion JlZ6, and p = O ,  0.2, 0.3 and 0.4. 
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threshold (cf Noid et a1 1980). A classical analogue may be a long-lived transient 
(but not asymptotic) localisation of trajectories, which undergo a slow diffusion near 
the remnants (i.e. small stability islands) of a broken torus. Such a phenomenon has 
been observed in the classical dynamics of our billiard (I), but not at the parameters 
of the specific example above. JaffC and Reinhardt (1982) have recently studied 
transient dynamical behaviour of the HCnon-Heiles system. They demonstrate regular- 
ity on short to intermediate time scales, resulting in a transient confinement of orbits 
to vague teri (Shirts and Reinhardt 1982), which seems to be useful for semiclassical 
quantisation. This is an important link between the dynamical and the structural point 
of view. It shows that the asymptotic structure of the classical phase space may not 
be enough to deduce the quantum mechanical structure, but the time dependent 
structure might be essential, instead. Of course, the latter is identical to the asymptotic 
structure only in integrable cases. In the specific example of the level i = 2 5  near 
p = 0.4 we have not found any transient behaviour of such type. 

Next we analyse the level i = 26, which is approximately constant at p s  0.1. The 
corresponding eigenfunction (figure 9( a, e) )  has two localisation regions, a vertical and 
a horizontal. The existence of the former would imply a positive derivative dE,,/dp, 
while the latter implies dEZ6/dp < 0. The two contributions compensate for each other, 
resulting in an approximate constancy of the eigenvalue. At p 2 0 . 2  the energy is 
decreasing, until ~ 5 0 . 4 .  Therefore, the state is localised mainly along a vertical 
elongated region. For p 3 0 . 4  the energy is again almost constant, and the state is 
largely chaotic, but nevertheless concentrated in the left side of the box (figure 9( h ) ) .  

In the next example of the level i = 28, which is a rapidly increasing function of p 
until it eventually collides with the level i = 2 9  near p - 0 . 3 5 ,  we demonstrate a 
spectacular localisation of the corresponding state-as a consequence of the symmetry 
breaking. In figure 10(d) the state is rotationally symmetric and fills the whole box 

Figure 10. The nodal pattern of the wavefunction as a function of p,  ( a )  p=O,  ( b )  
p = 0.25 and ( c )  p = 0.4. In (d) - (  f) we show the localisation properties for these states, 
respectively. The black regions are domains where the probability density t):, exceeds its 
average value l / s .  
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rather uniformly. As a result of the symmetry breaking of the circular disc, the 
wavefunction becomes strongly localised on a domain elongated along the symmetry 
line. This must be so if the level .E2*( p )  should increase rapidly. However, at p = 0.4 
the level has a much smaller slope and the state becomes delocalised. 

We can conclude that mixing of states occurs at avoided crossings, which implies 
a randomised wavefunction. An example par excellence of such mixing is the avoided 
crossing between the levels i = 22 and i = 2 3  near p = 0.25. Figures 7(h, i, j )  are a 
clear demonstration. Classical chaos by itself does not imply a particular chaotic 
quantum state, and vice versa. By a chaotic quantum state we mean one such that the 
wavefunction is not localised, has a random appearance, and the probability density 
is determined by the ergodic average over the energy surface, projected onto configur- 
ation space. It appears that classical chaos does imply quantum chaos in the statistical 
sense, i.e. it implies enhanced probability for avoided crossings. Therefore, with the 
onset of classical stochasticity the number of chaotic quantum states increases. 

6. The statistical properties of the spectrum 

It has been predicted (Zaslavsky 1977,1979.1981, Berry 1977a, b, 1981,1983a, Berry 
and Tabor 1977) that a drastic change in the distribution of spacings between adjacent 
levels accompanies the transition from an integrable to a nonintegrable case. Let 
P ( S )  d S  be the probability that a spacing S (in units of the mean level spacing) lies 
between S and S + dS. Then P( S) = e-’ (Poisson distribution) in integrable systems, 
while in chaotic systems one expects P ( S )  =constant X S” for small S. There is a 
disagreement about the critical exponent v, as it might be called. Berry’s geometrical 
derivation (Berry 1981, 1983a) predicts v = 1 (Wigner distribution). By using a semi- 
classical approach Zaslavsky derives a relation between the critical exponent v and 
the Kolmogorov entropy h of the corresponding classical system, namely 

(44) 

where To is the period of the closed orbits near the maximum of their distribution. 
(Zaslavsky absorbs To in h to make h dimensionless entropy.) This derivation is valid 
only for sufficiently chaotic systems (due to the arguments he uses), so that the limit 
of integrable systems ( h  + 0) may not be taken in (44). 

The most important qualitative feature shared by both predictions is the 
phenomenon of the level repulsion: as S-, 0, then P ( S )  =constant X S” -+ 0 if Y is 
positive. This is related to the fact that level crossings are forbidden in nonintegrable 
systems (Von Neumann and Wigner 1929), and avoided crossings appear instead. This 
is in contrast to the existence of level crossings in integrable systems. In the latter 
case the levels are uncorrelated and therefore Poisson distributed. In the former case 
there is a correlation between the levels-because of the repulsion-and they can be 
neither Poisson nor Gaussian distributed, because P ( S )  must vanish as S + 0. 

McDonald and Kaufman (1979) presented the level spacing distributions for a 
circular disc (integrable) and for the stadium (nonintegrable). The transition from the 
Poisson distribution to a distribution similar to the Wigner distribution is clearly seen 
there, notably the drop of P ( S )  near S = 0. In spite of the importance of this problem 
there is still no convincing quantitative test of various predictions. The reason is that 
it is extremely difficult to calculate a large enough number N of levels to overcome 
the l/JN-fluctuations in the statistics and to make definite conclusions about the 

v = constant/ Toh - 1, 
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critical exponent U, since one needs a high resolution of histogram at small S. How 
can we overcome this difficulty? 

The answer is that there are robust properties of the distribution P ( S ) ,  which are 
relatively easy to measure-to the crudest approximation, at least. When reviewing 
the random matrix mechanics Brody et a1 (1981) give the following derivation due 
originally to Wigner (1967). Consider the equation 

P ( S )  d S  = W( 1 E dSlO E S )  W(0 E S), (45) 

saying that the probability of finding a level within d S  near S is equal to the conditional 
probability, 

r,()(S) d S  := W( 1 E dS/O E S ) ,  (46) 

of having a level within d S  at S but none within S, times the probability of having no 
level within S, 

W(OE S) = P ( x )  dx. isx 
Hence, 

P ( S )  = r d S )  P ( x )  dx, 

which can be easily solved for P to yield 

P( S) =constant x rlO( S )  exp - rl0( x)  dx . ( i s  ) 

(47) 

(49) 

The ‘law of level repulsion’ described by the probability density r lO(  S )  is still arbitrary. 
The importance of the result (49) is that it predicts an overall change of P ( S )  when 
rlo(S) is varied. 

Let us assume a power law for the repulsion of levels, 

r l0(  S )  = constant x S”, (50) 
where Y is the critical exponent. By inserting this into (49) we have still two arbitrary 
constants a and b, 

P ( S )  = as”  exp(-bS”+’), (51) 
which are determined by two conditions, the normalisation of P( S), 

r =  
J P ( x ) d x = 1 ,  
0 

and the normalisation of the first moment, which is equal to 1 by definition, 

io‘ xP(x) dx = 1. 

It follows then that 

( 5 3 )  

where T ( x )  is the gamma function. 
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The robust quantity we meant before is the dispersion of P ( S ) ,  for instance. This 
is given by 

u2 = ( S 2 ) -  1 = x2P(x)  dx-  1, ( 5 5 )  i: 
and by using (5 1) and (54) we find that it is a decreasing function of the exponent v, 

u2 = 2(  + 1 ) r ( 2 / ( ~ +  i))/[r( I / (  v +  i)) l2- 1. (56) 

Therefore, by measuring u we can determine v. The dispersion (+ as a function of v 
according to the above equation is shown in figure 11. In particular, we notice that 
for v = 0, 1 we obtain Poisson and Wigner distributions, respectively. 
Poisson ( v = 0): 

P( S) = e-’, u = l .  

Wigner ( v  = 1): 

P ( S )  = $TS exp(+S2), U = (4/7r- 1)’”. 

Zaslavsky predicts also other cases, according to the continuous variation of v with 
h (equation (44)). As the entropy h increases, the critical exponent v decreases, which 
in turn predicts a spreading of the distribution P ( S ) ,  i.e. an increasing u. In our 
numerical results (figure 12) we observe the opposite. We plot normalised histograms 
in eight parameter intervals of equal size, each containing 50 parameter values p ,  and 
at each p we have taken the lowest 40 levels (accurate to four decimal places). Hence, 
for each histogram we have used 2000 levels. The dispersion u decreases gradually 
as po ( p  = po is the centre of the parameter interval for which a histogram is shown) 
increases, while Zaslavsky’s relation would predict the opposite, because the K entropy 
increases with p,  as has been calculated in (I). There may be several reasons for this 
discrepancy. (i) The statistics are still too bad (although it is very unlikely that they 

3 7  E 
c 

2 E  

Figure 11. The dispersion U ( Y )  as a function of the critical exponent v as given by (56). 
The Poisson and Wigner distributions correspond to the points U = 0, U = 1 and v = 1, U = 
( 4 / ~ r -  1 ) ” 2 ,  respectively. We show also the values of U as calculated for the histograms 
of figure 12, and given in table 2. A transition from the Poisson to the Wigner distribution 
with increasing U is clearly seen. Note that the Kolmogorov entropy increases with p very 
rapidly ( I ) ,  as shown in table 2. 
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Figure 12. Histograms for the level spacing distribution at various po. ( a )  po=0.04, ( b )  
p,=0.12, ( c )  p,,=0.19, ( d )  p0=0 .27 ,  ( e )  p0=0.35,  (f) p0=0.42, (g) po=0.50, ( h )  
p , = 0 . 5 8 .  In each histogram po is the centre of an interval of size Ap=O.O77. In each 
interval the spectrum has been calculated for 50 equidistant parameter values p ,  and for 
each p the lowest 40 levels, accurate to four places, have been included. Hence, each 
histogram contains 2000 level spacings. The histograms are normalised according to 
(52)-(53). A gradual transition from the Poisson distribution ( u = l )  to the Wigner 
distribution ( ~ = ( 4 / a -  1)”’) is seen. The calculated U’S  and the inferred U ’ S  are shown 
in figure 11 and their values are listed in table 2 .  

yield such strongly distorted qualitative features, because 1/JN = 0.02). (ii) The 40 
levels we use might be too low to lie in the semiclassical region, which which Zaslavsky’s 
result is supposed to be valid. (iii) The assumption r l o a  S” in the heuristic derivation 
by Wigner (1967), as given by (45)-(48), is not realistic. (We comment on this below.) 
(iv) The relation (44) fails for some reason, or else Zaslavsky’s prediction refers to the 
fine structure ( S  + 0) that we are not able to resolve. 

The reason (i) can be almost excluded. The second comment (ii) might be the 
truth, but it would be very surprising if the low levels behave in a completely different 
manner from the higher levels, where the semiclassical picture is valid. As concerns 
Wigner’s derivation, Brody et a1 (1981) pointed out two difficulties. The first question 
was the hypothesis of the linear repulsion ( ria( S )  cc S), which we have relaxed already. 
The second problem is more serious: rlo(S) = constant x S ”  increases as S + 00, and is 
thus certainly wrong for large S, but is most probably correct for small S. In fact 
rio(S) must vanish when S goes to infinity. There is thus an open question of how to 
determine a correct r I o ( S ) ,  which we are not going to solve. Our conclusions on v 
are based on the ansatz (51) and on the derived relation a( v)  in (56), and are thus 
indirectly subject to the Wigner-like surmise (50). 

As concerns the applicability of the relation (44) we are not able to present any 
serious objection to Zaslavsky’s derivation. The objection of taking the almost periodic 
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orbits, raised by Berry (1981, 1983a), is not justified in our opinion (Robnik and 
Zaslavsky 1983). The point is that the statistical properties of semiclassical spectra 
are determined by the statistical properties of strictly periodic orbits. But these 
properties do not change if we consider almost periodic orbits instead. If they changed 
in a drastic manner, then by reasons of structural stability with respect to discretisation 
the periodic orbits would have no meaning for the spectrum-which is refused by 
everybody. 

Now, it should be emphasised that the histograms in figure 12 do show clear evidence 
for a decreasing dispersion U as the system goes from the integrable ( p  = 0) to the 
nonintegrable case ( p  6 pslng). This means a trend from the Poisson distribution to the 
Wigner distribution, as shown in figure 11. But notice the fact that this variation is a 
gradual (continuous) one. We do not believe that this is an artifact of bad statistics, 
as argued in (i) above. But then, taking this phenomenon seriously (in a qualitative 
sense), we have problems with the geometrical derivation by Berry (1981, 1983a) as 
well. According to his prediction one would always expect the Wigner distribution, 
no matter how large the degree of nonintegrability and chaos?. (This is true for real 
Hermitian matrices-as is the case in our problem of quantising the billiard. For 
complex Hermitian matrices he predicts Y = 2 . )  Hence, one would expect a discon- 
tinuous transition from v = 0, LT = 1 (Poisson) to v = 1, LT = (4/ 7~ - 1 ) 1’2 (Wigner), and 
LT should thus be constant for all p > 0. This is not observed in figures 11-12. The 
positive conclusion we can make is that the Wigner distribution is compatible with the 
histogram for the largest p (figure 12(h)) ,  where the classical dynamics is highly chaotic, 
(most probably) mixing, with large Kolmogorov entropy (I). 

It appears that Berry’s assumptions are justified for ergodic systems, but not 
necessarily for systems in the transition region. His derivation certainly does not apply 
to integrable systems, and by the continuity argument also not to their neighbourhoods. 
In fact, near an integrable system one expects a clustering of diabolical points 
(=degeneracy points in the energy X 2-dimensional parameter space, at which level 
sheets have a conical intersection), increased number of cones with large opening 
angle, and therefore non-negligible contributions to P( S )  from level sheets with distant 
conical intersections. The latter fact would imply a failure of the applicability of a 
local ensemble in parameter space, which would change the result P( S )  a S for small 
S, because the distribution of diabolical points cannot be considered as uniform 
anymore. 

We feel that the situation here is similar to the question of the ensembles in the 
foundations of statistical mechanics, where, after all, the ensembles and their properties 
are derived from the dynamics. The ergodic theory gives a dynamical explanation for 
the statistical properties of (few-body) systems, and tells us thereby which ensembles 
are appropriate. Similarly, we believe that level spacing distribution P( S )  is determined 
by the dynamical properties of the system, and if ensembles of neighbouring systems 
(in the space of Hamilton systems) are used to derive P( S ) ,  then a dynamical justification 
of these ensembles is required. 

t More precisely, Berry predicts P ( S ) x  S as S+O for all nonintegrable cases, with the possibility that the 
domain of validity shrinks to zero as the system approaches the integrable case. In this case his prediction 
would refer to the fine structure near S = 0 which is almost hopeless to verify numerically. Of course, the 
implication that the linear level repulsion law implies Wigner’s distribution is not a part of Berry’s prediction, 
but follows from our derivation. However, we have reasons to expect that Berry’s prediction holds for very 
chaotic systems, e.g. ergodic, but not necessarily for nearly integrable KAM systems. and other systems in 
the intermediate region (see below). For more details see Berry (1983b). 
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We expect that the exponent v changes continuously with a generic perturbation 
of an integrable system. If so, is there any (local) universality concerning the depen- 
dence of the critical exponent v on the perturbation parameter E ,  for sufficiently small 
E ?  A hint is provided by our billiard as a generic perturbation of the circular disc. In 
figure 13 we plot v against parameter po (see table 2). Within the numerical accuracy 
the data are compatible with a linear dependence v =constant X p.  Now, notice that 
the proper perturbation parameter in our case is E = p 2 ,  because all perturbation 
expansions have the leading term of order p 2 .  (This is so because changing the sign 
of A, or  of p,  does not change the physics of our billiard.) Therefore, we may conjecture 
that for sufficiently small generic perturbations of an integrable system the critical 
exponent v is proportional to the square root of the perturbation parameter E ,  

v =constant x JE. (57) 

This is not ill defined, because there is no freedom of reparametrisation, since we 

1 5 1  1 1 5 1  1 

0 0 2  0 4  0 6  
P 

Figure 13. The critical exponent against the parameter p ,  according to the data of the 
histograms (table 2). 

Table 2. Data for figures 11, 12: po is the c_entre of the p interval from which the levels 
were taken to obtain a histogram, A, = (1/~ '2)  tan p, ,  U is the calculated dispersion of the 
histogram, v the inferred critical exponent (see figure 11) and h the value of the classical 
K entropy, h = h(p , , ) ,  according to Robnik (1983). 

Histogram Po U V h 

0.04 
0.12 
0.19 
0.27 
0.35 
0.42 
0.50 
0.58 

0.03 
0.08 
0.14 
0.20 
0.26 
0.32 
0.39 
0.46 

0.91 
0.80 
0.76 
0.65 
0.63 
0.60 
0.57 
0.47 

0.08 
0.22 
0.30 
0.52 
0.60 
0.70 
0.80 
1.25 

0.000 
0.002 
0.04 
0.18 
0.27 
0.35 
0.40 
0.42 
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require the leading terms of the perturbation expansions to be linear in E. More 
numerical examples are needed to test this conjecture, and we need a theoretical 
explanation. 

7. Concluding remarks 

Let us summarise our major message. Delocalisation of wavefunctions as a consequence 
of strong mixing of states occurs near avoided crossings. Since they appear also in 
nearly integrable systems with regular classical motion, they cannot be regarded as 
consequences of the classical chaos, individually. They are, however, increasingly more 
probable as a system goes through a stochastic transition and becomes a highly chaotic 
classical system. The avoided crossings are thus a consequence of the classical chaos 
only in a statistical sense, i.e. as an overall property of the spectrum. (This has been 
exemplified in § 6 . )  Even in a classical chaotic system with no tori there may exist 
localised wavefunctions, although they are less probable with increasing Kolmogorov 
entropy (cf Noid et a1 1980). 

We thereby conclude that increasingly more states become chaotic when the 
corresponding classical system becomes nonintegrable and chaotic. By a chaotic state 
we mean one with a nonlocalised wavefunction, having a random appearance and 
approximately microcanonical probability density. We have not calculated the transi- 
tion probabilities for the transitions between chaotic states, but it is qualitatively clear 
that the matrix elements between states with random wavefunctions are much lower 
than those between ordered, localised states. 

We make the following prediction (cf Marcus 1980a): for systems which have 
predominantly chaotic states (in a certain energy region) the oscillator strengths for 
the transitions to such states will be drastically diminished and randomly distributed, 
in contrast to the transitions between ordered, localised states. In the latter case the 
oscillator strengths follow some systematic rule (determined by the approximate 
symmetries of the states). 

In the statistical sense the classical chaos is a criterion to predict existence of chaotic 
states. The generic situation for Hamilton systems with a smooth potential is then 
characterised by a critical energy E,,,,: below Ecrit the classical motion is (almost) 
integrable and the spectral lines obey some deterministic rule, while above E,,,, the 
classical motion is chaotic and the oscillator strengths are randomly distributed. The 
quadratic Zeeman effect in the hydrogen atom (Robnik 1981, 1982, Harada and 
Hasegawa 1983) seems to be an example for this phenomenon. 

We stress the fact that the above criterion may not be applied to individual states. 
In § 5 we have shown examples of localised wavefunctions for a chaotic classical system. 
In fact, such exceptions of individual ordered states are expected, in particular for the 
low states (depending on h ) ,  even in classical chaotic systems. This leads to ‘surprising’ 
localisations (Hose and Taylor 1983) for the general reasons described in 0 5 ,  and has 
important implications for the stability of molecules, since the chemical bond requires 
a localised wavefunction. 

Finally, our numerical results suggest that the level repulsion law (50) and the level 
spacing distribution (51) change continuously with a generic perturbation of an 
integrable Hamilton system. They are characterised by a single parameter, namely 
the critical exponent v, which vanishes for integrable cases (Poisson distribution). We 
conjecture a local universality: for a sufficiently small perturbation parameter E we 



Quantum chaos in billiards 1073 
- 

expect v = constant x J e .  Our results are compatible with the prediction v = 1 (Wigner 
distribution) for ergodic systems. 
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Appendix 

We consider the Schrodinger eigenvalue problem, 

A $ E + ( E - U ) $ € = O ,  ( A l l  
where U = U ( q )  is the potential in the d-dimensional configuration space, assumed 
bounded from below, i.e. U ( q )  2 U,,,, and = CLE(q) is the eigenfunction. By a 
nodal cell we mean a finite, simply connected region bounded by the (d-1)-  
dimensional nodal surfaces (i.e. bounded by the zero set of +€((I)). We show that 
there exists a lower bound V,,,(E) (depending on the energy E )  to the volume of a 
nodal cell of (CIE (4). 

The estimate of V,,, follows by the comparison of the eigenvalue problem ( A l )  
with the Laplace eigenvalue problem with Dirichlet’s boundary conditions on the nodal 
cell D E  Rd. The point is that +hE(q) is a solution of ( A l )  on D with different boundary 
condition, namely $ € / d o  = 0, but with same energy E. The Laplace problem subject 
to these conditionsfollows by replacing the potential U ( q )  by its lower limit U,,,, i.e. 

(A2) 

where q E 3 ( q )  with the eigenvalue E’- U,,, is now the ground state of the Laplace 
operator on D. But among all domains D of constant volume the ground eigenvalue 
is the smallest for the d-dimensional sphere (Robnik 1980b). Therefore, 

(A3) 

where V is the volume of the nodal cell D, r the gamma function, and yo,l the first 
zero of the Bessel function of order zero, i.e. Jo( yo,,) = 0. 

Notice that E a E ’ ,  because U ( q )  5 U,,, and ($IU(q)-  UmlnI$)~O. From this 
and (A3) we obtain the final result 

APES + ( E ’  - U m l n ) ( ~ E ’  = 0,  

E’ - U,,, 3 .rry;,, [ r (d /2+  i ) ] -2/d~-2/d,  

V ( D )  3 Vmin(E)=[(E- ~ m , n ) / . r r y ; , l I - ~ ” / ~ ( d / 2 +  (‘44) 
where the equality is satisfied only if U ( q )  = U,,, on D and D is a d-dimensional sphere. 

In the special case of a plane box ( d  = 2, U ( q )  = 0), we have U,,, = 0 and the area 
.d of a nodal cell obeys the inequality 

2 &mi,= ~ ~ i . 1  / E ,  ( ‘ 4 5 )  

where the equality holds only for a circular nodal cell. 
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